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STATISTICAL PROPERTIES OF ALLOCATION AVERAGES

BACKGROUND AND PURPOSE

In an earlier paper, Brogdem estabiished that estimates of job
performance, if derived from a battery of predictor variables according
to least squares analysis under a model for linear regression, will
place men in jobs in the most efficient way possible for the given
predictors. For an optimal assignment based on such performance esti-
mates for an infinite number of individuals, the average performance
over the jobs to which men are assigned, if computed from the least
squares performance estimates, will equal the average performance after
assignment computed directly from measures of actual performance.

>

— The purpose of this paper is to describe a simulation experiment
which was performed to verify empirically Brogden's result concerning
the unbiased nature of allocation averages. The theoretical proof for
equality of allocation averages, computed from measures of actual per-
formance and from least squares estimates of this performance, requires
that optimal assignment be performed over least squares perfcrmance
estimates for an infinite number of individuals, In the many simulation
experiments conducted in BESRL's Statistical Research and Analysis Divi-
sion, the allocation average computed from performance estimates, rather
than from actual performance values, is often the basic statistic from
which other experimental results are evaluated. The number of observa-
tions on which these results are based is, however, far from infinite.
There was thus need to demonstrate that the two kinds of allocation
average remain essentially equal when based on relatively small numbers
of observations, as is typical of actual experiments. ‘

It is conceivable that 1) when the number of observations, n, is
small, allocation averages based on least squares estimates of per-
formance are biased relative to allocation averages representative of
measures of actual performance; 2) this bias, if it exists, occurs in
a certain direction--allocation averages based on the estimates may be
consistently larger than averages based on performance values for com-
parable numbers of observations; and 3) the size of this bias changes
as a function of the number of observations. If any of these conceivable
effects do in fact exist, then any experimental results previously
obtained which involve optimal assignment of performance estimates and
the allocation average statistic should be examined, and future experi-
ments which involve the allocation average statistic will have to be
corrected for the effect of the number of observations.

L Brogden, H. E. Least squares estimates and optimal classification.
Psychometrika. 20: 3, 1955.
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Using notation similar to lrogden s, the result which needs to bo ;
verified experimentally is S i

R n a m
L _Z_f_u‘u - 21 _,Z{ 13 (1)
as n changes from small to large:

yy 3 represents the performance of individual 1 in job j

91 j ‘represents the least squares estimate of job performance .

a, j represents an element of any allocation matrix A with n rows
(corresponding to individuals) and m columns (corresponding

to jobs). When individual i is assigned to job 31, 8y = 1;

otherwise, a 1) = 0, Each individual is assigned to one job;

14.,& 15 = ]; the number of individuals required for each
[ )

job 1s qj and 121 '1_1 - qj. Th‘ sum of the quotas ic, of

course, the total number of individuals: qu =n, An

: j=1
additional requirement on the allocation matrix is that the
elements be constructed solely with respect to the {laast aqun'u
performance eotiutu.

represents an elmnt of a particul‘ai- allocation matrix A

(24

1}

constructed so that

_ o
21 A’u 13 * ,Z ’1.: 1.1
R om

That 1s, for a given set of psrferaanes !u:inltu, 2:1 ;.1 “ .3

is the optiml allocation sum in the semse that no other urnumut
of elements in A, wnder condition that the requirements em nny A: aug
satisfied, will yield a higher sum, T '




Elemants of the optimal allocation matrix A are constructed from
a set of constants k,, jJ =1,2,...,m, such that each individual i is
assigned to the job j for which (?ij + kj) is highest; i.e., &, is

set to 1. Thus, by definition, H
. a m : n n S
21 ;1 (g + 2y 2 2__;1 ;1 (Fyy + Xydey
or, equivalently,
'm n m n ‘
;1 (;l:‘r“én + k)= z_j (;li Lty * B8y
since
'n n .
Therefore,
n = n m
21 _Zlﬁijaij 2 2;1 'zliidaiJ'
. n o n w
. | To prove equation (1), that ;1 .;l ii;jai,j = 2;1 _glyidaid aé n -,

Brogden considers the n individuals as being divided into subsets of
individuals that have "identical patterns' on the battery of predictor
teasts from which the performance estimates are determined. The addition
of the allocation constants to the corresponding performance estimates
will result in all individuals within such a subset being assigned to

the same job; i.e., the aij, 1=1,2,...,m, are constant for the n*
individuals within the subset. Therefore,




A e n e sivevgmi b o an Y A NI

Least squares performance estimates  derived under assumption of a
linear regression model are unbiased estimates of the population mean p

for the performance values, given the fixed predictor variables X; i.e,,
E@ | %) =E( ]| %) =n | 2.

Expressed in terms of observations, with each subgroup representing a

given set of values for the predictor variables,

n* n*

1 s _1

o ;1y” oo iZl Y1
and

m n* n n¥*

8 .= Ya Zy

;1“ 121 1 _Zl 1 &

or

n¥ m n* n

&, §, . = :
121 ;1 144 121 .Zla“y“

as n* = o,

Since this result holds for any subgroup, it also holds in summing over

all individuals. Consequently, the equality in (1) is established.




DESIGN OF THE SIMULATION EXPERIMENT

Assuming a model based on linear regression,
-~ L3
Y=XB+£&-= Y+,
! is a vector of random elements representing observations for an
individual on m performance measures; X is a vector of fixed variables

representing an individual set of scores on k predictor tests; ﬁis a

k x m matrix of random variables which are least squares estimates of

the population regression coefficients B ; g is a random vector represent~-

. a
ing measurement error; and P = X B, Assume that % has the m variate
normal distribution with mean vector @ and covariance matrix CE; then,

letting Y and X represent matrices of n vector observations,

Bax)lxy ema & -pir-x@x)tay
n-n

are unbiased estimates of B and CE E and C are mdependent, each

column vector 5 » 3 =1,2,...,k, and, consequently, Y has an m variate

=J

normal distribution.
In addition, if EQ;) =
Cov (1) = B(£'D)- Gy
Cov () = E(Z'L)- E(BXXB) = B(rx(xx)"X7) = ¢
Cov (L,Y) = B(E'Y) = E(L%B) = ECx(xx)"Xy) = ¢

~
Then the 1 x (m + m). partitioned random vector [Y:¥] has expected mean vector

(0 : 0] and covariance matrix CY C;
t N
% &
Estimates of (‘_',r and Ca are

Cy - £X - Gy

and

‘a - "1
cg = r'x(x;x) DY = CpCyy ™ Oy

..5..




-
Suppose [2& : -i] is to be any vector of observed values of the
A

N represent an observation in a

random sample drawn from the m + m variate normal distribution N(O, I);

random variables [Yi : }’1]. Let V

i.e., Zi.is a 1 x 2m vector of independent random normal deviates.

c c..c..” ke ¥
" YY lxx  Cxy
let T =¢c= = |, -1 -1

% Covxlxx Sy Cwx®xx Cxy

s

Then _[3-1 SAERA.

and %L[!i LY 1]. [!1 : i—i] " e

as n - o, (2)

&ﬂ
3

The ii’ for 1 =1, 2,...,n, are suitable values to represent least
squares performance estimates over which optimal assignment is to be
performed. The 31’ for the same { =1,2,...,n, represent the measures
of actual performance which correspond to the predicted values, 1f

K = {;13} is the n x m optimal allocation matrix constructed with

respect to the n x m performance estimates Y ='{§1J} ; 1.e.,

o n n n
§hndu Ll
Ly 7107 4 4700
whére A = {éid is any other allocation matrix which meets the required

restrictions. Then

n a

a 1 a &
2= «; 21 ‘Zlyida.id



n m
1 -~
and = ; Zi Ayidaid

provide suitable observations for the empirical test of the equality
in (1)0

Two series of simulations were performed. In one series, the
allocation averages z and %2 were based on 100 independent samples, s,
each with 100 individuals, n. 1In the other series, the sample size was
1000 for a total of 10 samples. The same sequence of random numbers
was used to generate both series of allocation averages, however, so
that the total number of entities generated (10,000 = n x s = 100 x 100 =
10 x 1000, even though subdivided to form different sized samples)
represented observations from the same individuals.

Observed values for CQ are presented in Table 1. The value in each
diagonal element of C_ , the criterion covariance matrix, was 1.00;
off-diagonal elements were set to 0.45. CXY’ the covariance matrix

between predictor and criterion variables, was formed from Table A-1,
TRN 16%%, rows AE, EL, GM, MM, CL, GT and columns VE, AR, PA, MA, ACS,
SM, AI, ECI, CI, GIT. Cxx, the predictor covariance matrix, contained

1.00's in diagonal elements; in the off-diagonal elements were values
for the AE, EL, GM, MM, CL, GT variables of Table A-I, TRN 126.%

The number of job categories was chosen to be 6; For each sample,
an n x 6 matrix of‘performance estimates was constructed from the second
six elements, the Y., of the partitioned vectors [Xi H Xi], i=1,2,...,n,

generated as shown in (2). Optimal assignment-was then performed from
this matrix, with nearly uniform quotas specified for each job; i.e.,

3) 6
. ™
q -160r17£orn=2q -lOOandq=1660rlSTforn=Lq=lOOO.
1 F % R 3 e Y

The linear programming procedure used to obtain optimal assignment was
the Hungarian solution® to the transportation problem.

aJSotenson, Richard C. Optimal allocation of enlisted men--Full regres-
sion equations vs aptitude area scores. BESRL Technical Research Note
163. November 1965. :

3/ Ratz, Aaron. Prediction of success in automatic data processing
-programming course. BESRL Technical Research Note 126. October 1962.

4 Kuhn, H. W. The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly. 2: 1, 1955.
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Using the same optimal assignment solution and the same sample of
n partitioned vectors [Y : Y ] generated before assignment, allocation

averages based on performance estimates, the Y i and allocation averages
based on criterion values, the Xi’ were computed to yield experimental

observations Qt and z, for sample t, t =1,2,...,s.

RESULTS
ALLOCATION AVERAGES BASED ON PERFORMANCE MEASURES AND ESTIMATES

Mean allocation averages simulated over 10Q samples of n = 100 and
10 samples of n = 1000 are presented in Table 2. The mean allocation
average over § samples for performance estimates is

8 n n
£o205 02 ) BT Tot)

and the mean allocation average over s samples for performance measures is

z-=%tzl -3 ZQE; vige fuge)

The null hypothesis of interest is: allocation averages based on
performance estimates and measures of actual performance are equal; i.e.,

H: E(E.)=-E(E)=¢.

J
-~
E . and g are random variables which are estlmates of the population
parameter §, Corresponding observed values are 2. and z..
Under H,

.- .

[Ta J 1)

[Var ( E) + Var ( E.) - Zov (‘é . E]é

is distributed as t with s - 1 degrees of freedom. The decision rule
adopted at the .05 level of significance is: Reject Ho if the observed

t 2 t (s 1); accept H otherwise. For z. and z. based on 100 samples
of n = 100, observed t = 0.1X% t 05(99) 1.98. Therefore, accept H .
For z. and z. based on 10 samples of n ="1000, observed t = 0.33<
t.05(9) = 2.26. Therefore, accept H .

-8 -




The empirical results based on 100 samples of 100 observations and
on 10 samples of 1000 observations are consis{ent with the equality in
(1) proved by Brogden for an infinite number?ébservation”

DISTRIBUTIONS OF MEASUREMENT ERROR

The question of bias in allocation averages based on least squares
performance estimates after optimal assignment can be rephrased in terms
of distributions of measurement error. In previous sections, two kinds
of allocation averages were computed after optimal assignment. Comparison
of measures of sample performance obtained before and after optimal assign-
ment are presented below: ’

Specifically, the null hypothesis to be tested was that mean differ-
ences between performance values and least squares estimates of perform-
ance values are the same both before and after allocation. Since

”~ M .
yiJ - yiJ = eiJ' this hypothesis is equivalent to determining whether

bias is introduced into the distribution of the error components as a
result of optimal assignment.

The measurement error frequency distributions before and after
assignment are presented in Tables 3 and 4. 1In Table 5, the error
terms for samples of 100 individuals are summarized over the 100 samples.
Table 4 is a summary of the error distributions for 10 samples of 1000
individuals.

Statistical tests were based on the mean errors computed, before
assignment, over ail jobs and all individuals within a sample and, after
assignment, over all jobs to which individuals were assigned. The
observed grand mean basad on all samples of n = 100 was .0026 before
allocation and -.0007 after allocation; corresponding values for samples
of n = 1000 was .0022 before allocation and -.0020 .after allocation.

Under the null hypothesis of no mean differences, letting eb. and ea.

represent mean errors obtained before and after allocation, respectively,

ebo - eao

[Va.r(eb.) + Va.r(ea.) - 2 Cov (eb.ea-)]%

is distributed as t with s - 1 degrees of freedom. Note that, as in the
previous section, the test statistic takes into account dependence between
the means.

At the .05 level of significance, the decision rule is to reject Ho

if the observed t 2 t 05(s-l); accept Ho otherwise. For the mean errors

-9-




based on 100 samples of n = 100, observed t = 0,12 < t 05(99) = 1.98,
Tharefore, accept H . For the mean errors based on 10 samples of
n = 1000, observed t = 0.33 < ¢t 05(9) =~ 2.26. Therefore, accept H .

Thus, no evidence was observed in the data for reproducible change
in the distributions.of measuremest error as a function of optimal
&llocation, either for samples with n = 100 or n = 1000. This result
is, of course, not surprising. The expected value of both performance
values and estimates of performance values is zero before assignment
and therefore the expected value of the differences will be zero. The
null hypothesis of no mean diffarences between performance values and
estimates after optimal assignment having been accepted, all means
examined in the present section should be zero, and significant differ-
ences would not be expected.

OPTIMAL ALLOCATION AS A FUNCTION OF SAMPLE. SIZE

The main purpose of the study waa to examine in detail any differ-
ences which might occur in allocation averages as a function of number
of observations. To do this, allocation averages z and z were based on
solutions for optimal ass{gnment computed over samples of n = 100, At
the same time, sllocation averages were obtained which were based on
the same 10,000 entities but differed because each optimal solution was
computed over only 1000 men.

It is often of practical interest, especially when it is important
to conserve computer space, whether the allocation average based on an
optimal assignment solution computed over a total sample of n individuals
will be greater than the mean of k allocation averages computed from the
same gample divided into k groups of n/k individuals. It could be con-
jectured that sample performance will be appreciably increased if the
size of ths sample on which optimization is based is increased, ..Experi-
mantal results relating to this hypothesis were incidentally available,
since they were required for the main purpose of the study.

As shown in Table 2, observed mean allocation averages based on
samples of n = 1000 tended to be higher than averages obtained from the
100-individual samples. It was not posaible to draw consistent con-
clusions, however, using the t-test for correlated means as a statistical
criterion. When both the solution for optimal assignment and the alloca-
tion average were based on least squares performance estimates, the mean
for samples of n = 1000 (2. = ,%056) was significantly greater than the
mean for samplaes of n = 100 (Z. = .3019) at the .0l level; the observed
t was 15.35, well over the critical value of 3.25 for 9 degrees of
freedom. On the other hand, with the solution for optimal assignment
baing based on performanca estimates but with the allocation average
computad from criterion values, the wean-for samples of n = 1000
(z. = .3076) was not significantly greater than the mean for samples of

- 10 -




n =100 (z. = .3026). The critical value at the .05 level for 9 degrees
of freedom is 2.26, which is higher than the observed t of 1.53.

SUMMARY

In a series of simulation experiments, optimal assignment was per-
formed with respect to least squares performance estimates for finite
samples. Two measures of allocation averages, one based on the least-
squares performance estimates and the other on actual performance values,
did not differ in statistical significance. Such results indicate lack
of bias in either measure of optimal assignment and are consistent with
Brogden's theoretical proof of equality of the two measures for infinite
samples.




el

cLis-

9.
Qrle*

Gylo’

)

*893vm1lIER 0UGEON.HN&

oGy
Lo6%*
0gas.

geave
0¢5
66L%*
otg¥y*

gesy”

66Ly-
o1gv*

lelye
celye
987"
605%
1¢8¥°

Lelye
celye

987" -

606¥*
T<gy"

*$93ew)sd Idupmioyiad 103 XJIIPW IOUETIRACD-IIUBIIBA = m&oo

pu® saanseow 3oUPWIOFI9d UIIMIDQ XTIJPW SDUBFILAOD = Mg o A%, e

*saanseaul QUGEONHOQ 107 XJ}IJvW DDUBIIPAOCI~IOURIIBA = NHU-

gobe*
ceve:
gate”
Tlge:
iz
ceee’

coéz’
ceve”
12
1iger
LKlee
ceee:

¢LIG

0000° T

aCyG*
Gvla°

005y
0000° T

(Pe33TWO 21w sjuswala TeoYaIIdUmAG)
SALVHILST AONVHHOAWId ANV STENSVAN FONYWIOIdad
WA STILTRVEVd NOILVINAOd ONIINISHEI T XIULVH JONVIYVAOD-FONVIVVA

1 21981

295¥°
pXo. Ad
0gss’

005%°
005¥%*
0C0*1

QecT*
0526
66Ly

o1gy*

00G¥%*
00G%*
00G¥*

0000°T 00S%*

Lalv Co6z" |
¢elye  cevee
198y  geIe”
606y Tlge*
8% Lelee
cecer
00G%*  OOG¥*
00G¥F*  00GY"
00G¥*  00G¥*
00G¥*
0000°T 00G%*
000* 1
2 M
=D
My My

- 12 =




Table 2

ALLOCATION AVERAGES BASED ON PERFORMANCE MEASURES

100 Samples, N = 100

10 Samples, Azsoc0

Performance: Performance:

Estimates Measures Estimates Measures
By Job |} Average S.D. | Average S.D. | Average S.D. | Average S.D.
1 -.2811 .4347 | -.2803 .9919 | -.2909 .4285 | -.2037 .9892
2 -.2105 .6136 2062 .9538 2070 .6103 1932 .9566
3 2147 5914 218  .9056 21838 .s5911 2306 .8923
.5697 .6166 5734 9043 5676 .6121 5742 .9025
5 ST887 8379 8064 .8451 7942 .6392 Bos2 .8508
6 .3414 6044 ,3211 9121 .3405 .5958 .3385 .8849
Combined | .3019 .5863 .3026 .9207 3056 .58386 23076 .9140
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DISTRIBUTIONS

Table 3

OF MEASUREMENT ERROR BEFORE AND AFTER ASSIGNMENT
FOR 100 SAMPLES OF 100 INDIVIDUALS

Grand Mean = -.0044

Interval Midpoints
Total
~3.5 -2.5 =1.5 =.5 5 1.5 2.5 3.5|Frequency Mean S.D.
Measurement Errors before Assignment
Job 1 2 107 1153 3754 3681 1196 107 © 10000  .0046 .8312
Job 2 0 26 786 4129 4159 869 31 O 10000 .0176 .7288
Job3 0 33 752 4196 4219 7716 24 0 | 10000  .00%0 .7126
Job 4 0 15 666 4317 4360 629 13 O 10000 -.0028 .6633
Jobs5 0 1 442 4626 4561 368 2 0 | 10000 -.0118 .5694
Job 6 0 19 722 4307 4157 767 28 0 10000  .0051 .6996
n = 60000
GFand Mean = .0026
Measurement Errors after Assignment
Job 1 1 18 198 632 631 200 20 O 1700 -.0008 .8840
Job 2 0 6 148 696 698 149 3 0 1700  .0043 .7386
Job 3 0 4 132 701 740 116 7 O 1700 -.0042 .6987
. Job 4 0 3 113 746 732 106 0 0 1700 -.0036 .6611
Job 5 0 0 77 731 738 54 0O O 1600 =-.0197 .5773
Job 6 0 2 111 68 671 128 2 0 1600 .0l96 .6933
n = 10000

- 14 -




Table'4

DISTRIBUTIONS OF MEASUREMENT ERROR BEFORE AND AFTER ASSIGNMENT
FOR 10 SAMPLES OF 1000 INDIVIDUALS

Interval Midpoints Total

g -3.5 -2,5 -=1.5 «.5 .5 1.5 2.5 3.9 Frequency Mean S.D.

' Measurement Errors before Assignment
Job 1 2 107 1153 3754 3681 1196 107 O 10000 .0046 .8812

Job2 0 26 786 4129 4159 869 31 O 10000 .0176 .7288

Job3 0 33 752 4196 4219 776 24 O] 10000  .0030 .7127
Job 4 15 666 4317 4360 629 13 0O 10000 =-.0028 .6633

0
Job 5 0 1 442 4626 45681 368 2 0 10000 -.0118 .5693

Job 6 0 19 T22 4307 4147 777 28 o0 10000 .0022 .6997
n = 60000

Grand: Mean = .0022
S.D. = .7152

Measurement Errors after Assignment

Job1l 1 18 192 619 624 196 20 O 1670  .0028 .8832
Job 2 0 7 133 692 677 157 4 0| 1670 .0138 .7398
Job3 0O 4 129 711 704 15 7 0 1670 ~-.0118 .7003
Job 4 0 3 108 744 714 101 0O 0 1670 -.0065 .8576
) Job 5 0 0 78 7154 768 €0 0 O 1660 -.0120 .5783
o Job & 0 2 111 1743 680 123 1 0 1660 .0020 .§781

n = 10000

Grand: Mean = ,0020
S.D. = .T107
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